Amanote Research

Amanote Research

    RegisterSign In

Bayesian Networks for Risk Prediction Using Real-World Data: A Tool for Precision Medicine

Value in Health - United Kingdom
doi 10.1016/j.jval.2019.01.006
Full Text
Open PDF
Abstract

Available in full text

Categories
MedicineHealth PolicyPublic HealthOccupational HealthEnvironmental
Date

April 1, 2019

Authors
Paul AroraDevon BoyneJustin J. SlaterAlind GuptaDarren R. BrennerMarek J. Druzdzel
Publisher

Elsevier BV


Related search

Software Defect Prediction Using Bayesian Networks

Empirical Software Engineering
Software
2012English

Estimating Systematic Risk in Real-World Networks

Lecture Notes in Computer Science
Computer ScienceTheoretical Computer Science
2014English

Developing Precision Medicine in a Global World

Clinical Cancer Research
Cancer ResearchOncology
2014English

Accurate Prediction of Chemical Shifts for Aqueous Protein Structure on “Real World” Data

Chemical Science
Chemistry
2020English

Big Data for Disease Prevention and Precision Medicine

2016English

Big Data for Disease Prevention and Precision Medicine

2016English

Development of a Simulation Tool for “Real World” SEM Applications

Microscopy and Microanalysis
Instrumentation
2002English

Rivaroxaban Precision Dosing Strategy for Real World Atrial Fibrillation Patients

Clinical and Translational Science
GeneticsMolecular BiologyPharmacologyBiochemistryNeuroscienceMedicineToxicologyPharmaceutics
2020English

Bayesian Approach to Learn Bayesian Networks Using Data and Constraints

2016English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy