Amanote Research

Amanote Research

    RegisterSign In

Witt Equivalence of Global Fields. II. Relative Quadratic Extensions

Transactions of the American Mathematical Society - United States
doi 10.1090/s0002-9947-1994-1176087-x
Full Text
Open PDF
Abstract

Available in full text

Categories
MathematicsApplied Mathematics
Date

January 1, 1994

Authors
Kazimierz Szymiczek
Publisher

American Mathematical Society (AMS)


Related search

Capitulation in Unramified Quadratic Extensions of Real Quadratic Number Fields

Glasgow Mathematical Journal
Mathematics
1994English

On Relative Class Numbers of Certain Quadratic Extensions

Bulletin of the American Mathematical Society
1975English

Quadratic Subfields on Quartic Extensions of Local Fields

International Journal of Mathematics and Mathematical Sciences
Mathematics
1988English

On the Class Number of Relative Quadratic Fields

Mathematics of Computation
Computational MathematicsApplied MathematicsNumber TheoryAlgebra
1978English

Class Groups of Quadratic Fields. II

Mathematics of Computation
Computational MathematicsApplied MathematicsNumber TheoryAlgebra
1987English

Equivalence of Algebraic Extensions

Bulletin of the American Mathematical Society
1937English

Power Integral Bases in Cubic and Quartic Extensions of Real Quadratic Fields

Acta Scientiarum Mathematicarum
Applied MathematicsAnalysis
2019English

L-Values and the Fitting Ideal of the Tame Kernel for Relative Quadratic Extensions

Acta Arithmetica
Number TheoryAlgebra
2008English

Length Two Extensions of Modules for the Witt Algebra

English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy