Amanote Research

Amanote Research

    RegisterSign In

Optimal Estimate of the Spectral Gap for the Degenerate Goldstein-Taylor Model

Journal of Statistical Physics - United States
doi 10.1007/s10955-013-0825-6
Full Text
Open PDF
Abstract

Available in full text

Categories
Nonlinear PhysicsMathematical PhysicsStatistical
Date

August 29, 2013

Authors
Étienne BernardFrancesco Salvarani
Publisher

Springer Science and Business Media LLC


Related search

Spectral Density and Magnetic Susceptibility for the Asymmetric Degenerate Anderson Model

Physical Review B
1984English

Optimal Error Estimate of Chebyshev-Legendre Spectral Method for the Generalised Benjamin-Bona-Mahony-Burgers Equations

Abstract and Applied Analysis
Applied MathematicsAnalysis
2012English

Spectral Gap of the Erlang a Model in the Halfin-Whitt Regime

Stochastic Systems
2012English

Note on a New Solution of the Taylor-Goldstein Equation and Applications to the Atmosphere

Journals of the Atmospheric Sciences
Atmospheric Science
1976English

The Optimal Band Gap for Plastic Photovoltaics

SPIE Newsroom
2007English

An Error Estimate for Viscous Approximate Solutions of Degenerate Parabolic Equations

Journal of Nonlinear Mathematical Physics
Nonlinear PhysicsMathematical PhysicsStatistical
2002English

Interaction Model for the Gap Equation

Physical Review C
2011English

A Model for the Priestley-Taylor Parameter Α

Journal of Climatology & Applied Meteorology
Engineering
1983English

Degenerate Blume-Emery-Griffiths Model for the Martensitic Transformation

Physical Review B
1996English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy