Amanote Research

Amanote Research

    RegisterSign In

The Power of (Non-)Linear Shrinking: A Review and Guide to Covariance Matrix Estimation

SSRN Electronic Journal
doi 10.2139/ssrn.3384500
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 2019

Authors
Olivier LedoitMichael Wolf
Publisher

Elsevier BV


Related search

A Practitioner's Guide to Robust Covariance Matrix Estimation

1996English

Sparse Estimation of a Covariance Matrix

Biometrika
StatisticsProbabilityUncertaintyApplied MathematicsBiological SciencesAgriculturalMathematics
2011English

Non-Gaussian Structure of the Lensed CMB Power Spectra Covariance Matrix

Physical Review D
2012English

Robust Covariance Matrix Estimation and Portfolio Allocation: The Case of Non-Homogeneous Assets

2020English

The Application of Sparse Estimation of Covariance Matrix to Quadratic Discriminant Analysis

BMC Bioinformatics
BiochemistryApplied MathematicsComputer Science ApplicationsStructural BiologyMolecular Biology
2015English

An Empirical Bayesian Approach to Stein-Optimal Covariance Matrix Estimation

Journal of Empirical Finance
EconomicsFinanceEconometrics
2014English

Robust Rank Constrained Kronecker Covariance Matrix Estimation

2016English

Non-Parametric Estimation of Residual Moments and Covariance

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
MathematicsEngineeringAstronomyPhysics
2008English

Optimal Estimation of a Large-Dimensional Covariance Matrix Under Stein’s Loss

Bernoulli
StatisticsProbability
2018English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy