Amanote Research

Amanote Research

    RegisterSign In

A Numerical Method for Solving Nonlinear Ill-Posed Problems

Numerical Functional Analysis and Optimization - United States
doi 10.1080/01630569908816894
Full Text
Open PDF
Abstract

Available in full text

Categories
ControlComputer Science ApplicationsSignal ProcessingAnalysisOptimization
Date

January 1, 1999

Authors
Alexander G. RammAlexandra B. Smirnova
Publisher

Informa UK Limited


Related search

Regularizing Newton--Kaczmarz Methods for Nonlinear Ill-Posed Problems

SIAM Journal on Numerical Analysis
Computational MathematicsApplied MathematicsNumerical Analysis
2006English

Numerical Approach to Estimate the Error of Ill-Posed Problems

Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control & Radioelectronics
2016English

Regularization Methods for Ill-Posed Problems

English

Prediction Bands for ILL-Posed Problems

1989English

A Numerical Method for Solving Time-Dependent Convection-Diffusion Problems

Boletim da Sociedade Paranaense de Matematica
Mathematics
2017English

Deconvolution With Wavelet Footprints for Ill-Posed Inverse Problems

2002English

On the Optimality of Methods for Ill-Posed Problems

Zeitschrift fur Analysis und ihre Anwendung
Applied MathematicsAnalysis
1987English

Completely Well-Posed Problems for Nonlinear Differential Equations

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1964English

An Efficient Numerical Method for Solving Nonlinear Thomas-Fermi Equation

Acta Universitatis Sapientiae, Mathematica
Mathematics
2018English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy