Amanote Research

Amanote Research

    RegisterSign In

Macroscopic Equations Governing Noisy Spiking Neuronal Populations With Linear Synapses

PLoS ONE - United States
doi 10.1371/journal.pone.0078917
Full Text
Open PDF
Abstract

Available in full text

Categories
Multidisciplinary
Date

November 13, 2013

Authors
Mathieu N. GaltierJonathan Touboul
Publisher

Public Library of Science (PLoS)


Related search

Asymptotic Theory of Filtering for Linear Operator Equations With Discrete Noisy Data

Mathematics of Computation
Computational MathematicsApplied MathematicsNumber TheoryAlgebra
1987English

Macroscopic Description for Networks of Spiking Neurons

Physical Review X
AstronomyPhysics
2015English

Optimal Population Coding by Noisy Spiking Neurons

Proceedings of the National Academy of Sciences of the United States of America
Multidisciplinary
2010English

Computing of Temporal Information in Spiking Neural Networks With ReRAM Synapses

Faraday Discussions
Theoretical ChemistryPhysical
2019English

Noisy Spiking in Visual Area V2 of Amblyopic Monkeys

Journal of Neuroscience
Neuroscience
2016English

Designing Networks of Spiking Silicon Neurons and Synapses

1993English

Training Spiking Neuronal Networks With Applications in Engineering Tasks

IEEE Transactions on Neural Networks
2008English

Reconstruction of Macroscopic Maxwell Equations

Springer Tracts in Modern Physics
AstronomyPhysics
2010English

INEX – A Binary Neuronal Model With Inhibitory and Excitatory Synapses

BMC Neuroscience
NeuroscienceCellularMolecular Neuroscience
2011English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy