Amanote Research

Amanote Research

    RegisterSign In

Haar Random Forest Features and SVM Spatial Matching Kernel for Stonefly Species Identification

doi 10.1109/icpr.2010.643
Full Text
Open PDF
Abstract

Available in full text

Date

August 1, 2010

Authors
N. LariosB. SoranL.G. ShapiroG. Martinez-MunozJ. LinT.G. Dietterich
Publisher

IEEE


Related search

Efficient Kernel Clustering Using Random Fourier Features

2012English

Kernel Matching Pursuit for Large Datasets

Pattern Recognition
Signal ProcessingComputer VisionPattern RecognitionArtificial IntelligenceSoftware
2005English

Supplemental Information 1: RFsp—Random Forest for Spatial Data (R Tutorial)

English

Identification of Medicinal Plants Using Geometric Features of Leaf Image Through SVM

International Journal of Trend in Scientific Research and Development
2018English

SVM Classifiers: The Objects Identification on the Base of Their Hyperspectral Features

ITM Web of Conferences
2017English

Random Forest as a Generic Framework for Predictive Modeling of Spatial and Spatio-Temporal Variables

PeerJ
GeneticsMolecular BiologyBiochemistryBiological SciencesMedicineAgriculturalNeuroscience
2018English

Infinite Feature Selection Based Arrhythmia Classification Using Semantic Features and Random Forest

International Journal of Intelligent Engineering and Systems
EngineeringComputer Science
2019English

Experimental Evaluation of Multiplicative Kernel SVM Classifiers for Multi-Class Detection

2014English

A Novel Approach for Efficient SVM Classification With Histogram Intersection Kernel

2013English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy