Amanote Research

Amanote Research

    RegisterSign In

Regression on Parametric Manifolds: Estimation of Spatial Fields, Functional Outputs, and Parameters From Noisy Data

doi 10.21236/ada560131
Full Text
Open PDF
Abstract

Available in full text

Date

March 30, 2012

Authors
Anthony T. PateraEinar M. Ronquist
Publisher

Defense Technical Information Center


Related search

Non-Parametric Drift Estimation for Diffusions From Noisy Data

Statistics & Decisions
2011English

Spatial Regression Models Over Two-Dimensional Manifolds

Biometrika
StatisticsProbabilityUncertaintyApplied MathematicsBiological SciencesAgriculturalMathematics
2016English

Comparison of Parametric and Non-Parametric Estimation Methods in Linear Regression Model

Alphanumeric Journal
2019English

Spatial Coordinate Transformations With Noisy Data

2019English

Maximum Likelihood Estimation of the Parameters of Multiple Sinusoids From Noisy Measurements

IEEE Transactions on Acoustics, Speech, and Signal Processing
1989English

Maximum-Likelihood Estimation of Delta-Domain Model Parameters From Noisy Output Signals

IEEE Transactions on Signal Processing
Electronic EngineeringSignal ProcessingElectrical
2008English

Adaptive Estimation of Parameters Using Partial Information of Desired Outputs

English

Non-Parametric Sequential Estimation of a Regression Function Based on Dependent Observations

Sequential Analysis
ModelingStatisticsProbabilitySimulation
2013English

Estimation of Regression Parameters for Finite Populations

English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy