Amanote Research

Amanote Research

    RegisterSign In

Latent Variable Modeling in the Hierarchical Modeling Framework: Exploring Initial Status X Treatment Interactions in Longitudinal Studies

doi 10.1037/e648002011-001
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 2002

Authors
Michael SeltzerKilchan ChoiYeow Meng Thum
Publisher

Test accounts


Related search

Reliability Estimation in Longitudinal Studies Using Latent Growth Curve Modeling

Measurement
Applied MathematicsEducationStatisticsProbability
2019English

Generalized Hierarchical Word Sequence Framework for Language Modeling

Journal of Natural Language Processing
2017English

Modeling Bivariate Longitudinal Hormone Profiles by Hierarchical State Space Models

Journal of the American Statistical Association
UncertaintyStatisticsProbability
2014English

A Surprisingly Effective Fix for Deep Latent Variable Modeling of Text

2019English

Latent Variable Modeling Approach for Assessing Social Impacts of Mine Closure

Open Journal of Applied Sciences
2014English

Dirichlet Latent Variable Hierarchical Recurrent Encoder-Decoder in Dialogue Generation

2019English

Hierarchical Data Modeling in the Social Sciences

Journal of Educational and Behavioral Statistics
EducationSocial Sciences
1995English

Use of Latent Variable Modeling to Delineate Psychiatric and Cognitive Profiles in Parkinson Disease

American Journal of Geriatric Psychiatry
PsychiatryGerontologyGeriatricsMental Health
2009English

Initialization Framework for Latent Variable Models

2014English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy