Amanote Research

Amanote Research

    RegisterSign In

Instability Theory of the Navier–Stokes–Poisson Equations

Analysis and PDE - United States
doi 10.2140/apde.2013.6.1121
Full Text
Open PDF
Abstract

Available in full text

Categories
Applied MathematicsNumerical AnalysisAnalysis
Date

November 3, 2013

Authors
Juhi JangIan Tice
Publisher

Mathematical Sciences Publishers


Related search

Global Weak Solutions of the Navier-Stokes / Fokker-Planck / Poisson Linked Equations

Journal of Mathematical Physics, Analysis, Geometry
GeometryMathematical PhysicsAnalysisTopology
2014English

Non-Isothermal Smoluchowski–Poisson Equations as a Singular Limit of the Navier–Stokes–Fourier–Poisson System

Journal des Mathematiques Pures et Appliquees
MathematicsApplied Mathematics
2007English

Discontinuous Galerkin Approximations of the Stokes and Navier-Stokes Equations

Mathematics of Computation
Computational MathematicsApplied MathematicsNumber TheoryAlgebra
2010English

Exact Solutions of the Navier-Stokes Equations

2000English

Exact Solutions of the Navier–stokes Equations

1992English

The Navier—Stokes Equations and Backward Uniqueness

International Mathematical Series
2002English

Finite Element Solution of the Navier-Stokes Equations.

English

Dynamic Programming for the Stochastic Navier-Stokes Equations

ESAIM: Mathematical Modelling and Numerical Analysis
Numerical AnalysisApplied MathematicsAnalysisSimulationModelingComputational Mathematics
2000English

Time-Periodic Solutions to the Navier-Stokes Equations

2016English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy