Amanote Research

Amanote Research

    RegisterSign In

Chaos in the Lorenz Equations: A Computer Assisted Proof Part III: Classical Parameter Values

Journal of Differential Equations - United States
doi 10.1006/jdeq.2000.3894
Full Text
Open PDF
Abstract

Available in full text

Categories
Applied MathematicsAnalysis
Date

January 1, 2001

Authors
Konstantin MischaikowMarian MrozekAndrzej Szymczak
Publisher

Elsevier BV


Related search

Chaos Synchronization in Lorenz System

Applied Mathematics
2015English

Symmetric Heteroclinic Connections in the Michelson System: A Computer Assisted Proof

SIAM Journal on Applied Dynamical Systems
ModelingAnalysisSimulation
2005English

A Computer-Assisted Stability Proof for the Orr-Sommerfeld Problem With Poiseuille Flow

Nonlinear Theory and Its Applications, IEICE
2011English

Evolving Chaos: Identifying New Attractors of the Generalised Lorenz Family

Applied Mathematical Modelling
ModelingApplied MathematicsSimulation
2018English

Chaos in Classical D0-Brane Mechanics

Journal of High Energy Physics
High Energy PhysicsNuclear
2016English

Proof of Concept of a Simple Computer–Assisted Technique for Correcting Bone Deformities

English

Computer-Assisted Therapy for Medication-Resistant Auditory Hallucinations: Proof-Of-Concept Study

British Journal of Psychiatry
MedicinePsychiatryMental Health
2013English

Classical and Quantum Chaos in Atomic Systems

Advances In Atomic, Molecular, and Optical Physics
1994English

Chaos and Dynamical Complexity in the Quantum to Classical Transition

Scientific Reports
Multidisciplinary
2018English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy