Amanote Research

Amanote Research

    RegisterSign In

Fast Parallel Algorithms for Matrix Reduction to Normal Forms

Applicable Algebra in Engineering, Communications and Computing - Germany
doi 10.1007/s002000050089
Full Text
Open PDF
Abstract

Available in full text

Categories
Applied MathematicsNumber TheoryAlgebra
Date

December 1, 1997

Authors
Gilles Villard
Publisher

Springer Science and Business Media LLC


Related search

Fast Algorithms for Parallel Architectures

1990English

Fast Parallel Permutation Algorithms

Parallel Processing Letters
HardwareTheoretical Computer ScienceArchitectureSoftware
1995English

Internally Deterministic Parallel Algorithms Can Be Fast

ACM SIGPLAN Notices
Computer Science
2012English

Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation Over Finite Fields

SIAM Journal on Computing
MathematicsComputer Science
1990English

Pseudo-Parallel Submanifolds With Flat Normal Bundle of Space Forms

Glasgow Mathematical Journal
Mathematics
2006English

Using Interior-Point Methods for Fast Parallel Algorithms for Bipartite Matching and Related Problems

SIAM Journal on Computing
MathematicsComputer Science
1992English

Normal Forms for Real Quadratic Forms

Archiv der Mathematik
Mathematics
2009English

Fast Parallel Compositon of Dunhuang Murals Based on Matrix Tearing

2017English

Jacobi--Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils

SIAM Journal of Scientific Computing
Computational MathematicsApplied Mathematics
1998English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy