Amanote Research

Amanote Research

    RegisterSign In

Maximal Independent Systems of Units in Global Function Fields

Acta Arithmetica - Poland
doi 10.4064/aa-78-1-1-10
Full Text
Open PDF
Abstract

Available in full text

Categories
Number TheoryAlgebra
Date

January 1, 1996

Authors
Fei XuJianqiang Zhao
Publisher

Institute of Mathematics, Polish Academy of Sciences


Related search

Elliptic Units and Class Fields of Global Function Fields

Canadian Mathematical Bulletin
Mathematics
1997English

A Note on Global Units and Local Units of Function Fields

Acta Arithmetica
Number TheoryAlgebra
2009English

Distributions and Euler Systems in Global Function Fields

Acta Arithmetica
Number TheoryAlgebra
2007English

Cyclotomic Units in Function Fields

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
2008English

Embeddings of Maximal Tori in Classical Groups Over Local and Global Fields

Izvestiya Mathematics
Mathematics
2016English

Maximal K-Independent Sets in Graphs

Discussiones Mathematicae - Graph Theory
CombinatoricsApplied MathematicsDiscrete Mathematics
2008English

Dependency of Units in Number Fields

Mathematics of Computation
Computational MathematicsApplied MathematicsNumber TheoryAlgebra
2006English

Maximal Class Numbers of CM Number Fields

Journal of Number Theory
Number TheoryAlgebra
2010English

Measures in Almost Independent Fields

Fundamenta Mathematicae
Number TheoryAlgebra
1951English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy