Amanote Research

Amanote Research

    RegisterSign In

Process-Based Statistical Models Predict Dynamic Estuarine Salinity

doi 10.5772/intechopen.89911
Full Text
Open PDF
Abstract

Available in full text

Date

March 11, 2020

Authors
Christina L. DurhamDavid B. EgglestonAmy J. Nail
Publisher

IntechOpen


Related search

Statistical Models to Predict Discharge Overflow

Water Science and Technology
TechnologyWater ScienceEnvironmental Engineering
2018English

Simultaneous Statistical Inference in Dynamic Factor Models

Contributions to Statistics
2016English

Subspace Method Identification for Dynamic Multivariate Statistical Process Control

IFAC Proceedings Volumes
2005English

Computer Simulations of Statistical Models and Dynamic Complex Systems

Brazilian Journal of Physics
AstronomyPhysics
2004English

Aquatic Insects in an Estuarine Environment: Densities, Distribution and Salinity Tolerance

Freshwater Biology
Aquatic Science
1998English

Log-Based Simplification of Process Models

Lecture Notes in Computer Science
Computer ScienceTheoretical Computer Science
2015English

Application of Dynamic Point Process Models to Cardiovascular Control

BioSystems
StatisticsGeneticsProbabilityMolecular BiologyBiochemistryApplied MathematicsSimulationMedicineModeling
2008English

Dynamic Statistical Classification

Revista de Matemática: Teoría y Aplicaciones
2017English

Constraint-Based Motion Optimization Using a Statistical Dynamic Model

ACM Transactions on Graphics
Computer GraphicsComputer-Aided Design
2007English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy