Amanote Research

Amanote Research

    RegisterSign In

An Interpretable Framework for Clustering Single-Cell RNA-Seq Datasets

BMC Bioinformatics - United Kingdom
doi 10.1186/s12859-018-2092-7
Full Text
Open PDF
Abstract

Available in full text

Categories
BiochemistryApplied MathematicsComputer Science ApplicationsStructural BiologyMolecular Biology
Date

March 9, 2018

Authors
Jesse M. ZhangJue FanH. Christina FanDavid RosenfeldDavid N. Tse
Publisher

Springer Science and Business Media LLC


Related search

A Hybrid Clustering Algorithm for Identifying Cell Types From Single-Cell RNA-Seq Data

Genes
Genetics
2019English

Single Cell RNA-seq Data Clustering Using TF-IDF Based Methods

BMC Genomics
BiotechnologyGenetics
2018English

CIDR: Ultrafast and Accurate Clustering Through Imputation for Single-Cell RNA-seq Data

Genome Biology
2017English

DTWscore: Differential Expression and Cell Clustering Analysis for Time-Series Single-Cell RNA-seq Data

BMC Bioinformatics
BiochemistryApplied MathematicsComputer Science ApplicationsStructural BiologyMolecular Biology
2017English

Table S3: RNA-Seq Datasets for SON

English

Table S5: RNA-Seq Datasets for NTS

English

Table S6: RNA-Seq Datasets for RVLM

English

Table S2: RNA-Seq Datasets for SFO

English

RNA Velocity: Molecular Kinetics From Single-Cell RNA-Seq

Molecular Cell
Cell BiologyMolecular Biology
2018English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy