Amanote Research

Amanote Research

    RegisterSign In

Comparison of Normalization Methods for Hi-C Data

BioTechniques - United States
doi 10.2144/btn-2019-0105
Full Text
Open PDF
Abstract

Available in full text

Categories
BiochemistryBiotechnologyGeneticsMolecular Biology
Date

February 1, 2020

Authors
Hongqiang LyuErhu LiuZhifang Wu
Publisher

Future Science Ltd


Related search

Per-Channel Basis Normalization Methods for Flow Cytometry Data

Cytometry Part A
Forensic MedicinePathologyHistologyCell Biology
2009English

A Comprehensive Comparison of Normalization Methods for Loading Control and Variance Stabilization of Reverse-Phase Protein Array Data

Cancer Informatics
Cancer ResearchOncology
2014English

Hi-C Analysis: From Data Generation to Integration

Biophysical Reviews
Molecular BiologyStructural BiologyBiophysics
2018English

Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization

Biophysical Journal
Biophysics
2020English

Systematic Evaluation of Normalization Methods for Glycomics Data Based on Performance of Network Inference

2019English

Group Normalization for Genomic Data

PLoS ONE
Multidisciplinary
2012English

Comparative Analysis of Normalization Methods for Network Propagation

Frontiers in Genetics
GeneticsMolecular Medicine
2019English

Data S2: Raw Data for Comparison of Genomic DNA Extraction Methods

English

An Integrated Model for Detecting Significant Chromatin Interactions From High-Resolution Hi-C Data

Nature Communications
AstronomyGeneticsMolecular BiologyBiochemistryChemistryPhysics
2017English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy