Amanote Research

Amanote Research

    RegisterSign In

A New Lower Bound on Hadwiger-Debrunner Numbers in the Plane

doi 10.1137/1.9781611975994.70
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 2020

Authors
Chaya KellerShakhar Smorodinsky
Publisher

Society for Industrial and Applied Mathematics


Related search

H. Hadwiger, H. Debrunner, v. Klee, Combinatorial Geometry in the Plane (Holt, Rinehart & Winston, London, 1964), Vii + 113 Pp., 30s.

Proceedings of the Edinburgh Mathematical Society
Mathematics
1965English

In Search of an Appropriate Lower Bound. The Zero Lower Bound vs. The Positive Lower Bound Under Discretion and Commitment

German Economic Review
EconomicsEconometrics
2019English

A Lower Bound on Web Services Composition

Lecture Notes in Computer Science
Computer ScienceTheoretical Computer Science
2007English

A Lower Bound on Wait-Free Counting

Journal of Algorithms
1997English

A Lower Bound on Cycle-Finding in Sparse Digraphs

2020English

A Lower Bound on the Probability of Error in Multihypothesis Testing

IEEE Transactions on Information Theory
Computer Science ApplicationsInformation SystemsLibraryInformation Sciences
1995English

A New Lower Bound for {\Vert (3/2)^k\Vert }

Journal de Theorie des Nombres de Bordeaux
Number TheoryAlgebra
2007English

Lower Bound on the Intermediate-Boson Mass

Physical Review Letters
AstronomyPhysics
1973English

A Lower Bound on the Subriemannian Distance for Hölder Distributions

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
2010English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy