Amanote Research

Amanote Research

    RegisterSign In

Anomaly Detection Using Deep Autoencoders for the Assessment of the Quality of the Data Acquired by the CMS Experiment

EPJ Web of Conferences - France
doi 10.1051/epjconf/201921406008
Full Text
Open PDF
Abstract

Available in full text

Categories
AstronomyPhysics
Date

January 1, 2019

Authors
Adrian Alan PolVirginia AzzoliniGianluca CerminaraFederico De GuioGiovanni FranzoniMaurizio PieriniFilip SirokýJean-Roch Vlimant
Publisher

EDP Sciences


Related search

The Data Quality Monitoring Software for the CMS Experiment at the LHC: Past, Present and Future

EPJ Web of Conferences
AstronomyPhysics
2019English

Anomaly Detection With Conditional Variational Autoencoders

2019English

Anomaly-Based Network Intrusion Detection Using Wavelets and Adversarial Autoencoders

Lecture Notes in Computer Science
Computer ScienceTheoretical Computer Science
2019English

The Fast Simulation of the CMS Experiment

Journal of Physics: Conference Series
AstronomyPhysics
2012English

Signatures of Ads/CFT Using the CMS Experiment at the LHC

2010English

The Upgrade of the Muon System of the CMS Experiment

Journal of Instrumentation
InstrumentationMathematical Physics
2014English

Deep Probabilistic NMF Using Denoising Autoencoders

International Journal of Machine Learning and Computing
ManagementComputer Science ApplicationsInformation SystemsArtificial Intelligence
2018English

Track Finding for the Level-1 Trigger of the CMS Experiment

Springer proceedings in physics
High Energy PhysicsNuclear
2018English

Highlights From the CMS Experiment

2017English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy