Amanote Research

Amanote Research

    RegisterSign In

The Finite Population Bootstrap - From the Maximum Likelihood to the Horvitz-Thompson Approach

Austrian Journal of Statistics - Austria
doi 10.17713/ajs.v43i2.10
Full Text
Open PDF
Abstract

Available in full text

Categories
UncertaintyApplied MathematicsStatisticsProbability
Date

June 11, 2014

Authors
Andreas Quatember
Publisher

Austrian Statistical Society


Related search

Horvitz-Thompson Estimator Based on the Auxiliary Variable

Statistics in Transition
UncertaintyStatisticsProbability
2020English

Supplemental Information 2: Maximum Likelihood Bootstrap Support for the Tree Obtained From the File S1

English

The Maximum Likelihood Approach to Voting on Social Networks

2013English

Maximum Likelihood Approach

2013English

Bounding the Maximum Likelihood Degree

Mathematical Research Letters
Mathematics
2015English

The Conformal Bootstrap at Finite Temperature

Journal of High Energy Physics
High Energy PhysicsNuclear
2018English

An Algebraic Approach to the Analytic Bootstrap

Journal of High Energy Physics
High Energy PhysicsNuclear
2017English

Approximate Maximum Likelihood Estimation for Population Genetic Inference

Statistical Applications in Genetics and Molecular Biology
Computational MathematicsStatisticsGeneticsMolecular BiologyProbability
2017English

Finite-Sample Properties of the Maximum Likelihood Estimator for the Binary Logit Model With Random Covariates

Statistical Papers
UncertaintyStatisticsProbability
2010English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy