Amanote Research

Amanote Research

    RegisterSign In

Fraudulent Financial Statements: Detection Modeling Using Data Mining

International Journal of Latest Trends in Engineering and Technology
doi 10.21172/1.93.02
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 2018

Authors

Unknown

Publisher

S N Education Society


Related search

Detection of Fraudulent Financial Statements Using the Hybrid Data Mining Approach

SpringerPlus
Multidisciplinary
2016English

An Overview of Instruments and Tools to Detect Fraudulent Financial Statements

Universal Journal of Accounting and Finance
2019English

Program Applications Install Fraud Detection Using Data Mining

Naukovi praci Donec'kogo nacional'nogo tehnicnogo universitetu. Seria, Informatika, kibernetika i obcisluval'na tehnika
2017English

Non-Financial Indicators of Fraudulent Bankruptcy

Accounting. Analysis. Auditing
2019English

PFrauDetector: A Parallelized Graph Mining Approach for Efficient Fraudulent Phone Call Detection

2016English

Fraud Detection of Credit Card Using Data Mining Techniques

International Journal of Innovative Technology and Exploring Engineering
Mechanics of MaterialsElectronic EngineeringCivilStructural EngineeringElectricalComputer Science
2019English

Detection of Cardiac Disease Using Data Mining Classification Techniques

International Journal of Advanced Computer Science and Applications
Computer Science
2017English

Consolidated Financial Statements

2019English

Large-Scale Data-Driven Financial Risk Modeling Using Big Data Technology

2018English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy