Amanote Research

Amanote Research

    RegisterSign In

The Lukacs–Olkin–Rubin Theorem on Symmetric Cones Without Invariance of the “Quotient”

Journal of Theoretical Probability - United States
doi 10.1007/s10959-014-0587-3
Full Text
Open PDF
Abstract

Available in full text

Categories
MathematicsStatisticsUncertaintyProbability
Date

December 9, 2014

Authors
Bartosz Kołodziejek
Publisher

Springer Science and Business Media LLC


Related search

On a Theorem of E. Lukacs

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1978English

The Generalized Fundamental Equation of Information on Symmetric Cones

Aequationes Mathematicae
CombinatoricsMathematicsApplied MathematicsDiscrete Mathematics
2016English

Analysis of Control Systems on Symmetric Cones

2015English

Near Invariance and Symmetric Operators

Operators and Matrices
Number TheoryAnalysisAlgebra
2014English

Symmetric Liapunov Center Theorem

Calculus of Variations and Partial Differential Equations
Applied MathematicsAnalysis
2017English

A Central Limit Theorem on the Space of Positive Definite Symmetric Matrices

Annales de l'Institut Fourier
GeometryTopologyNumber TheoryAlgebra
1992English

Tychonoff's Theorem Without the Axiom of Choice

Fundamenta Mathematicae
Number TheoryAlgebra
1981English

A Reduction of the Nielsen Fixed Point Theorem for Symmetric Product Maps to the Lefschetz Theorem

Fundamenta Mathematicae
Number TheoryAlgebra
1990English

The Laurent Expansion Without Cauchy's Integral Theorem

Canadian Mathematical Bulletin
Mathematics
1972English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy