Amanote Research

Amanote Research

    RegisterSign In

Decoding From Pooled Data: Sharp Information-Theoretic Bounds

SIAM Journal on Mathematics of Data Science
doi 10.1137/18m1183339
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 2019

Authors
Ahmed El AlaouiAaditya RamdasFlorent KrzakalaLenka ZdeborováMichael I. Jordan
Publisher

Society for Industrial & Applied Mathematics (SIAM)


Related search

Information-Theoretic Bounds for Authentication Frauds

English

Information-Theoretic Bounds on Model Selection for Gaussian Markov Random Fields

2010English

Combinatorial Pooled Sequencing: Experiment Design and Decoding

Quantitative Biology
GeneticsMolecular BiologyBiochemistryApplied MathematicsSimulationComputer Science ApplicationsModeling
2016English

Information-Theoretic Approach for Detection of Differential Splicing From RNA-seq Data

EMBnet.journal
2015English

Sharp Bounds for Neuman Means With Applications

Journal of Nonlinear Science and Applications
Number TheoryAnalysisAlgebra
2016English

Sharp Entrywise Perturbation Bounds for Markov Chains

SIAM Journal on Matrix Analysis and Applications
Analysis
2015English

Sharp Bounds for Sums of Dependent Risks

Journal of Applied Probability
MathematicsStatisticsUncertaintyProbability
2013English

Sharp Weighted Bounds for Fractional Integral Operators

Journal of Functional Analysis
Analysis
2010English

Sharp Bounds on the Bias of Trimean

Statistical Papers
UncertaintyStatisticsProbability
2014English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy