Amanote Research

Amanote Research

    RegisterSign In

Voice Identification Using Neural Network and Mel Frequency Cepstrum Coefficients

doi 10.4108/eai.18-7-2019.2288519
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 2019

Authors
Corianti GMSFahmi FahmiMaksum PinemSihar PanjaitanSuherman Suherman
Publisher

EAI


Related search

Shouted Speech Detection Using Hidden Markov Model With Rahmonic and Mel-Frequency Cepstrum Coefficients

Journal of the Acoustical Society of America
AcousticsUltrasonicsArtsHumanities
2016English

Speaker Recognition Model Using Two-Dimensional Mel-Cepstrum and Predictive Neural Network

English

Text Dependent Speaker Identification Using Hidden Markchov Model and Mel Frequency Cepstrum Coefficient

International Journal of Computer Applications
2014English

Identifikasi Suara Menggunakan Metode Mel Frequency Cepstrum Coefficients (Mfcc) Dan Jaringan Syaraf Tiruan Backpropagation

DIELEKTRIKA
2020English

Linear Versus Mel Frequency Cepstral Coefficients for Speaker Recognition

2011English

Complex Cepstrum Based Voice Conversion Using Radial Basis Function

ISRN Signal Processing
2014English

Mel-Scaled Autoregressive (Mel-Ar) Model Based Voice Activity Detection Using Likelihood Ratio Measure

International Journal of Computer Applications
2019English

Multilingual Speech Identification Using Artificial Neural Network

International Journal of Information Technology Convergence and Services
2015English

Identification of Rice Seed Varieties Using Neural Network

Journal of Zhejiang University SCIENCE
2005English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy