Amanote Research

Amanote Research

    RegisterSign In

Standard Lattices of Compatibly Embedded Finite Fields

doi 10.1145/3326229.3326251
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 2019

Authors
Luca De FeoHugues RandriamÉdouard Rousseau
Publisher

ACM Press


Related search

Maximal Sublattices of Finite Distributive Lattices

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1973English

Constructions of Dense Lattices Over Number Fields

TEMA (São Carlos)
2020English

Vector Quantization by Packing of Embedded Truncated Lattices

English

Cover-Preserving Embeddings of Finite Length Semimodular Lattices Into Simple Semimodular Lattices

Algebra Universalis
Number TheoryLogicAlgebra
2010English

On Compact Topological Lattices of Finite Dimension

Transactions of the American Mathematical Society
MathematicsApplied Mathematics
1969English

Distributive Lattices With Finite Projective Covers

Pacific Journal of Mathematics
Mathematics
1979English

Leveled Fully Homomorphic Signatures From Standard Lattices

2015English

Optimised ExpTime Tableaux for𝒮ℋℐ𝒩over Finite Residuated Lattices

Journal of Applied Mathematics
Applied Mathematics
2014English

On Finite Elements in Sublattices of Banach Lattices

Mathematische Nachrichten
Mathematics
2007English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy