Amanote Research

Amanote Research

    RegisterSign In

A Simple Class of Reduced Bias Kernel Estimators of Extreme Value Parameters

Computational and Mathematical Methods
doi 10.1002/cmm4.1025
Full Text
Open PDF
Abstract

Available in full text

Date

April 30, 2019

Authors
Frederico CaeiroLígia Henriques‐RodriguesDora Prata Gomes
Publisher

Wiley


Related search

Kernel Estimators of Extreme Level Curves

Test
UncertaintyStatisticsProbability
2010English

Reduced-Bias Location-Invariant Extreme Value Index Estimation: A Simulation Study

Communications in Statistics Part B: Simulation and Computation
ModelingStatisticsProbabilitySimulation
2011English

Local Multiplicative Bias Correction for Asymmetric Kernel Density Estimators

Journal of Econometrics
Philosophy of ScienceApplied MathematicsEconomicsEconometricsHistory
2007English

Exploiting Structure of Maximum Likelihood Estimators for Extreme Value Threshold Selection

Technometrics
ModelingApplied MathematicsStatisticsProbabilitySimulation
2016English

Simple and Bias-Corrected Matching Estimators for Average Treatment Effects

SSRN Electronic Journal
2003English

Kernel Quantile Estimators

Journal of the American Statistical Association
UncertaintyStatisticsProbability
1990English

A Bias Reducing Approach for Some Robust Estimators by Predicting Roughness in Case of Kernel Estimation

Acta Physica Polonica A
AstronomyPhysics
2016English

A Simple Classification Method for Class Imbalanced Data Using the Kernel Mean

2014English

Nonparametric Kernel Estimators for Image Classification

2012English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy