Amanote Research

Amanote Research

    RegisterSign In

Asymptotics for Some Combinatorial Characteristics of the Convex Hull of a Poisson Point Process in the Clifford Torus

Discrete and Computational Geometry - United States
doi 10.1007/s00454-012-9476-7
Full Text
Open PDF
Abstract

Available in full text

Categories
CombinatoricsMathematicsGeometryDiscrete MathematicsComputational TheoryTopologyTheoretical Computer Science
Date

December 14, 2012

Authors
Alexander Magazinov
Publisher

Springer Science and Business Media LLC


Related search

Some Performance Tests of Convex Hull Algorithms

BIT Numerical Mathematics
Computer NetworksApplied MathematicsSoftwareComputational MathematicsCommunications
1984English

On a Study of the Exponential and Poisson Characteristics of the Poisson Process

Metrika
UncertaintyStatisticsProbability
2000English

On the Volume of the Convex Hull of Two Convex Bodies

Monatshefte fur Mathematik
Mathematics
2013English

Affine Invariant Point-Set Matching Using Convex Hull Bisection

2016English

Clifford Torus and Klein Bottle

Izvestiya of Altai State University
2017English

Convex Hull

2007English

Determination of the Convex Hull of a Radiating System in a Heterogeneous Background

Progress In Electromagnetics Research M
OpticalElectronicCondensed Matter PhysicsMagnetic Materials
2012English

The Ultimate Planar Convex Hull Algorithm?

SIAM Journal on Computing
MathematicsComputer Science
1986English

The Closed Convex Hull of Certain Extreme Points

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
1964English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy