Amanote Research

Amanote Research

    RegisterSign In

Mod P3analogues of Theorems of Gauss and Jacobi on Binomial Coefficients

Acta Arithmetica - Poland
doi 10.4064/aa142-2-1
Full Text
Open PDF
Abstract

Available in full text

Categories
Number TheoryAlgebra
Date

January 1, 2010

Authors
John B. CosgraveKarl Dilcher
Publisher

Institute of Mathematics, Polish Academy of Sciences


Related search

Noniterative Computation of Gauss--Jacobi Quadrature

SIAM Journal of Scientific Computing
Computational MathematicsApplied Mathematics
2019English

Prime Power Divisors of Binomial Coefficients.

Journal für die Reine und Angewandte Mathematik
MathematicsApplied Mathematics
1992English

Products of Binomial Coefficients Modulo P2

Acta Arithmetica
Number TheoryAlgebra
2001English

Prime Factors of Binomial Coefficients and Related Problems

Acta Arithmetica
Number TheoryAlgebra
1988English

On Congruences Related to Central Binomial Coefficients, Harmonic and Lucasnumbers

Turkish Journal of Mathematics
Mathematics
2016English

Sieved Partition Functions and Q-Binomial Coefficients

Mathematics of Computation
Computational MathematicsApplied MathematicsNumber TheoryAlgebra
1990English

Efficient Computation of Binomial Coefficients Using Splay Trees

International Journal on Data Science and Technology
2016English

Nonvanishing Modulo ℓof Fourier Coefficients of Jacobi Forms

Research in Number Theory
Number TheoryAlgebra
2016English

A Unified Proof for the Convergence of Jacobi and Gauss–Seidel Methods

SIAM Review
Computational MathematicsApplied MathematicsTheoretical Computer Science
1995English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy