Amanote Research

Amanote Research

    RegisterSign In

Optimal Maximin $L_{1}$-Distance Latin Hypercube Designs Based on Good Lattice Point Designs

Annals of Statistics - United States
doi 10.1214/17-aos1674
Full Text
Open PDF
Abstract

Available in full text

Categories
UncertaintyStatisticsProbability
Date

December 1, 2018

Authors
Lin WangQian XiaoHongquan Xu
Publisher

Institute of Mathematical Statistics


Related search

Nested Maximin Latin Hypercube Designs in Two Dimensions

SSRN Electronic Journal
2005English

Two-Dimensional Minimax Latin Hypercube Designs

SSRN Electronic Journal
2005English

Construction of Nested Orthogonal Latin Hypercube Designs

Statistica Sinica
UncertaintyStatisticsProbability
2013English

Construction of Sliced Orthogonal Latin Hypercube Designs

Statistica Sinica
UncertaintyStatisticsProbability
2013English

Maximin Optimal Designs for a Compartmental Model

mODa 7 — Advances in Model-Oriented Design and Analysis
2004English

Nearly Orthogonal Latin Hypercube Designs for Many Design Columns

Statistica Sinica
UncertaintyStatisticsProbability
2015English

Construction of Maximin Distance Designs via Level Permutation and Expansion

Statistica Sinica
UncertaintyStatisticsProbability
2018English

Sliced Full Factorial-Based Latin Hypercube Designs as a Framework for a Batch Sequential Design Algorithm

Technometrics
ModelingApplied MathematicsStatisticsProbabilitySimulation
2017English

On MSE-optimal Crossover Designs

Annals of Statistics
UncertaintyStatisticsProbability
2018English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy