Amanote Research

Amanote Research

    RegisterSign In

Two-Dimensional Minimax Latin Hypercube Designs

SSRN Electronic Journal
doi 10.2139/ssrn.814648
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 2005

Authors
Edwin van Dam
Publisher

Elsevier BV


Related search

Nested Maximin Latin Hypercube Designs in Two Dimensions

SSRN Electronic Journal
2005English

Construction of Nested Orthogonal Latin Hypercube Designs

Statistica Sinica
UncertaintyStatisticsProbability
2013English

Construction of Sliced Orthogonal Latin Hypercube Designs

Statistica Sinica
UncertaintyStatisticsProbability
2013English

Nearly Orthogonal Latin Hypercube Designs for Many Design Columns

Statistica Sinica
UncertaintyStatisticsProbability
2015English

Optimal Maximin $L_{1}$-Distance Latin Hypercube Designs Based on Good Lattice Point Designs

Annals of Statistics
UncertaintyStatisticsProbability
2018English

Latin Hypercube Sampling

2016English

Centered $L_2$-Discrepancy of Random Sampling and Latin Hypercube Design, and Construction of Uniform Designs

Mathematics of Computation
Computational MathematicsApplied MathematicsNumber TheoryAlgebra
2000English

Sliced Full Factorial-Based Latin Hypercube Designs as a Framework for a Batch Sequential Design Algorithm

Technometrics
ModelingApplied MathematicsStatisticsProbabilitySimulation
2017English

Latin Hypercube Sampling in Sensitivity Analysis

1994English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy