Amanote Research

Amanote Research

    RegisterSign In

Register-Based Implementation of the Sparse General Matrix-Matrix Multiplication on GPUs

doi 10.1145/3178487.3178529
Full Text
Open PDF
Abstract

Available in full text

Date

January 1, 2018

Authors
Junhong LiuXin HeWeifeng LiuGuangming Tan
Publisher

ACM Press


Related search

Strassen's Matrix Multiplication on GPUs

2011English

Data-Driven Mixed Precision Sparse Matrix Vector Multiplication for GPUs

Transactions on Architecture and Code Optimization
HardwareInformation SystemsArchitectureSoftware
2020English

Fast Sparse Matrix Multiplication

Lecture Notes in Computer Science
Computer ScienceTheoretical Computer Science
2004English

Sparse Matrix-Vector Multiplication on GPGPUs

ACM Transactions on Mathematical Software
Applied MathematicsSoftware
2017English

Using Static Allocation Algorithms for Matrix Matrix Multiplication on Multicores and GPUs

2018English

Model-Driven Autotuning of Sparse Matrix-Vector Multiply on GPUs

2010English

Sparse Matrix Multiplication: The Distributed Block-Compressed Sparse Row Library

Parallel Computing
Computer GraphicsComputer NetworksHardwareCommunicationsComputer-Aided DesignArchitectureTheoretical Computer ScienceArtificial IntelligenceSoftware
2014English

Locality-Aware Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication on Many-Core Processors

IEEE Transactions on Parallel and Distributed Systems
HardwareComputational TheorySignal ProcessingArchitectureMathematics
2016English

Perfomance Models for Blocked Sparse Matrix-Vector Multiplication Kernels

2009English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy