Amanote Research

Amanote Research

    RegisterSign In

Data-Driven Mixed Precision Sparse Matrix Vector Multiplication for GPUs

Transactions on Architecture and Code Optimization - United States
doi 10.1145/3371275
Full Text
Open PDF
Abstract

Available in full text

Categories
HardwareInformation SystemsArchitectureSoftware
Date

January 10, 2020

Authors
Khalid AhmadHari SundarMary Hall
Publisher

Association for Computing Machinery (ACM)


Related search

Model-Driven Autotuning of Sparse Matrix-Vector Multiply on GPUs

2010English

Sparse Matrix-Vector Multiplication on GPGPUs

ACM Transactions on Mathematical Software
Applied MathematicsSoftware
2017English

Register-Based Implementation of the Sparse General Matrix-Matrix Multiplication on GPUs

2018English

Perfomance Models for Blocked Sparse Matrix-Vector Multiplication Kernels

2009English

Strassen's Matrix Multiplication on GPUs

2011English

Efficient Sparse Matrix Multiple-Vector Multiplication Using a Bitmapped Format

2013English

Locality-Aware Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication on Many-Core Processors

IEEE Transactions on Parallel and Distributed Systems
HardwareComputational TheorySignal ProcessingArchitectureMathematics
2016English

Parallel Multicore CSB Format and Its Sparse Matrix Vector Multiplication

Advances in Linear Algebra & Matrix Theory
2014English

Fast Sparse Matrix Multiplication

Lecture Notes in Computer Science
Computer ScienceTheoretical Computer Science
2004English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy