Amanote Research

Amanote Research

    RegisterSign In

Eigenvalue Bounds for Schrödinger Operators With Complex Potentials

Bulletin of the London Mathematical Society - United Kingdom
doi 10.1112/blms/bdr008
Full Text
Open PDF
Abstract

Available in full text

Categories
Mathematics
Date

April 6, 2011

Authors
Rupert L. Frank
Publisher

Wiley


Related search

Pseudomodes for Schrödinger Operators With Complex Potentials

Journal of Functional Analysis
Analysis
2019English

One-Dimensional Schrödinger Operators With Complex Potentials

Annales Henri Poincare
High Energy PhysicsNuclearMathematical PhysicsNonlinear PhysicsStatistical
2020English

On a Sum Rule for Schrödinger Operators With Complex Potentials

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
2010English

On the Number of Eigenvalues of Schrödinger Operators With Complex Potentials

Journal of the London Mathematical Society
Mathematics
2016English

Eigenvalue Estimates for Schrödinger Operators on Metric Trees

Advances in Mathematics
Mathematics
2011English

Schrödinger Operators With a ∞ $A_{\infty }$ Potentials

Potential Analysis
Analysis
2016English

$L^p$ Estimates for Schrödinger Operators With Certain Potentials

Annales de l'Institut Fourier
GeometryTopologyNumber TheoryAlgebra
1995English

On Schrödinger Operators With Multipolar Inverse-Square Potentials

Journal of Functional Analysis
Analysis
2007English

Spectral Properties of Schrödinger Operators With Decaying Potentials

Proceedings of Symposia in Pure Mathematics
2007English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy