Amanote Research

Amanote Research

    RegisterSign In

Pseudomodes for Schrödinger Operators With Complex Potentials

Journal of Functional Analysis - United States
doi 10.1016/j.jfa.2018.10.004
Full Text
Open PDF
Abstract

Available in full text

Categories
Analysis
Date

May 1, 2019

Authors
David KrejčiříkPetr Siegl
Publisher

Elsevier BV


Related search

Eigenvalue Bounds for Schrödinger Operators With Complex Potentials

Bulletin of the London Mathematical Society
Mathematics
2011English

One-Dimensional Schrödinger Operators With Complex Potentials

Annales Henri Poincare
High Energy PhysicsNuclearMathematical PhysicsNonlinear PhysicsStatistical
2020English

On a Sum Rule for Schrödinger Operators With Complex Potentials

Proceedings of the American Mathematical Society
MathematicsApplied Mathematics
2010English

On the Number of Eigenvalues of Schrödinger Operators With Complex Potentials

Journal of the London Mathematical Society
Mathematics
2016English

Schrödinger Operators With a ∞ $A_{\infty }$ Potentials

Potential Analysis
Analysis
2016English

$L^p$ Estimates for Schrödinger Operators With Certain Potentials

Annales de l'Institut Fourier
GeometryTopologyNumber TheoryAlgebra
1995English

On Schrödinger Operators With Multipolar Inverse-Square Potentials

Journal of Functional Analysis
Analysis
2007English

Spectral Properties of Schrödinger Operators With Decaying Potentials

Proceedings of Symposia in Pure Mathematics
2007English

The Resonance Counting Function for Schrödinger Operators With Generic Potentials

Mathematical Research Letters
Mathematics
2005English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy