Amanote Research

Amanote Research

    RegisterSign In

Kernel Complexity for Nonparametric Distributions and Detection of Its Changes

doi 10.20944/preprints201911.0381.v1
Full Text
Open PDF
Abstract

Available in full text

Date

December 3, 2019

Authors
So HiraiKenji Yamanishi
Publisher

MDPI AG


Related search

Nonparametric Kernel Estimators for Image Classification

2012English

Detection of Changes in Luminance Distributions

Journal of Vision
OphthalmologySensory Systems
2011English

Bandwidth Selection in Nonparametric Kernel Testing

Journal of the American Statistical Association
UncertaintyStatisticsProbability
2008English

Nonparametric Goodness-Of-Fit Tests for Discrete Null Distributions

R Journal
UncertaintyNumerical AnalysisStatisticsProbability
2011English

A Comparative Study of Monotone Nonparametric Kernel Estimates

Journal of Statistical Computation and Simulation
StatisticsProbabilityApplied MathematicsUncertaintySimulationModeling
2006English

Nonparametric Direct Density Ratio Estimation Using Beta Kernel

Statistics
UncertaintyStatisticsProbability
2020English

A Nonparametric Adaptive Cusum Method and Its Application in Network Anomaly Detection

International Journal of Advancements in Computing Technology
2012English

Nonparametric Kernel Estimators of Probability Density in the Discrete Spaces

Polythematic Online Scientific Journal of Kuban State Agrarian University
2016English

LoCoH: Nonparameteric Kernel Methods for Constructing Home Ranges and Utilization Distributions

PLoS ONE
Multidisciplinary
2007English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy