Amanote Research

Amanote Research

    RegisterSign In

Nonparametric Direct Density Ratio Estimation Using Beta Kernel

Statistics - United Kingdom
doi 10.1080/02331888.2020.1722671
Full Text
Open PDF
Abstract

Available in full text

Categories
UncertaintyStatisticsProbability
Date

February 4, 2020

Authors
Gaku Igarashi
Publisher

Informa UK Limited


Related search

Using Pseudometrics in Kernel Density Estimation

Journal of Nonparametric Statistics
UncertaintyStatisticsProbability
2014English

Statistical Analysis of Kernel-Based Least-Squares Density-Ratio Estimation

Machine Learning
Artificial IntelligenceSoftware
2011English

Nonparametric Density and Regression Estimation

Journal of Economic Perspectives
EconomicsEconometrics
2001English

Kernel Deconvolution Density Estimation

English

Efficient Density Estimation Using Fejer-Type Kernel Functions

English

Nonparametric Density Estimation in High-Dimensions

Statistica Sinica
UncertaintyStatisticsProbability
2013English

Varying Kernel Density Estimation On

Statistics and Probability Letters
UncertaintyStatisticsProbability
2012English

Nonparametric Density Estimation in Compound Poisson Processes Using Convolution Power Estimators

Metrika
UncertaintyStatisticsProbability
2013English

Automatic Lithology Prediction From Well Logging Using Kernel Density Estimation

Journal of Petroleum Science and Engineering
Geotechnical EngineeringFuel TechnologyEngineering Geology
2018English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy