Amanote Research

Amanote Research

    RegisterSign In

Kernel Deconvolution Density Estimation

doi 10.31274/etd-180810-5501
Full Text
Open PDF
Abstract

Available in full text

Date

Unknown

Authors
Guillermo Basulto-Elias
Publisher

Iowa State University


Related search

Varying Kernel Density Estimation On

Statistics and Probability Letters
UncertaintyStatisticsProbability
2012English

Super-Resolution via a Fast Deconvolution With Kernel Estimation

Eurasip Journal on Image and Video Processing
Electronic EngineeringSignal ProcessingInformation SystemsElectrical
2016English

Using Pseudometrics in Kernel Density Estimation

Journal of Nonparametric Statistics
UncertaintyStatisticsProbability
2014English

Non-Parametric Confidence Bands in Deconvolution Density Estimation

Journal of the Royal Statistical Society. Series B: Statistical Methodology
UncertaintyStatisticsProbability
2007English

Robust Background Modeling With Kernel Density Estimation

International Journal of Online Engineering
EngineeringE-learning
2015English

Kernel Estimation When Density May Not Exist

Econometric Theory
EconomicsEconometricsSocial Sciences
2008English

Nonparametric Direct Density Ratio Estimation Using Beta Kernel

Statistics
UncertaintyStatisticsProbability
2020English

Efficient Density Estimation Using Fejer-Type Kernel Functions

English

Supervised Non-Parametric Discretization Based on Kernel Density Estimation

Pattern Recognition Letters
Signal ProcessingComputer VisionPattern RecognitionArtificial IntelligenceSoftware
2019English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy