Amanote Research

Amanote Research

    RegisterSign In

HyperNEAT Versus RL PoWER for Online Gait Learning in Modular Robots

Lecture Notes in Computer Science - Germany
doi 10.1007/978-3-662-45523-4_63
Full Text
Open PDF
Abstract

Available in full text

Categories
Computer ScienceTheoretical Computer Science
Date

January 1, 2014

Authors
Massimiliano D’AngeloBerend WeelA. E. Eiben
Publisher

Springer Berlin Heidelberg


Related search

HyperNEAT for Locomotion Control in Modular Robots

Lecture Notes in Computer Science
Computer ScienceTheoretical Computer Science
2010English

Adaptive Gait Acquisition Using Multi-Agent Learning for Wall Climbing Robots

1995English

RL-IAC: An Exploration Policy for Online Saliency Learning on an Autonomous Mobile Robot

2016English

Modular Field Robots for Extraterrestrial Exploration

Advances in Astronautics Science and Technology
2020English

Online Learning Schemes for Power Allocation in Energy Harvesting Communications

IEEE Transactions on Information Theory
Computer Science ApplicationsInformation SystemsLibraryInformation Sciences
2018English

A Decentralized Control Framework for Modular Robots

English

Reinforcement Learning for Online Maximum Power Point Tracking Control

Journal of Clean Energy Technologies
2015English

Directed Locomotion for Modular Robots With Evolvable Morphologies

Lecture Notes in Computer Science
Computer ScienceTheoretical Computer Science
2018English

A 'Sidewinding' Locomotion Gait for Hyper-Redundant Robots

English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy