Amanote Research

Amanote Research

    RegisterSign In

Tate Pairing Implementation for Hyperelliptic Curves Y 2 = X P – X + D

Lecture Notes in Computer Science - Germany
doi 10.1007/978-3-540-40061-5_7
Full Text
Open PDF
Abstract

Available in full text

Categories
Computer ScienceTheoretical Computer Science
Date

January 1, 2003

Authors
Iwan DuursmaHyang-Sook Lee
Publisher

Springer Berlin Heidelberg


Related search

Ordinary Pairing-Friendly Genus 2 Hyperelliptic Curves With Absolutely Simple Jacobians

Lecture Notes in Computer Science
Computer ScienceTheoretical Computer Science
2017English

On THE EQUATION X(x+d)…(x+(k-1)d)=By 2

Glasgow Mathematical Journal
Mathematics
2000English

On THE DIOPHANTINE EQUATION P^x+(p+1)^y=z^2

International Journal of Pure and Applied Mathematics
MathematicsApplied Mathematics
2014English

On the Diophantine Equation $X^p-X=y^q-Y$

Publicacions Matematiques
Mathematics
1999English

Modular Equations for Hyperelliptic Curves

Mathematics of Computation
Computational MathematicsApplied MathematicsNumber TheoryAlgebra
2004English

Ekedahl–Oort Strata of Hyperelliptic Curves in Characteristic 2

Algebra and Number Theory
Number TheoryAlgebra
2013English

Parallel Hardware Architectures for the Cryptographic Tate Pairing

2006English

A Note on the Torsion of the Jacobians of Superelliptic Curves $Y^{q}=x^{p}+A$

Banach Center Publications
2016English

Sieving for Rational Points on Hyperelliptic Curves

Mathematics of Computation
Computational MathematicsApplied MathematicsNumber TheoryAlgebra
2001English

Amanote Research

Note-taking for researchers

Follow Amanote

© 2025 Amaplex Software S.P.R.L. All rights reserved.

Privacy PolicyRefund Policy